你现在的位置:首页 > 实验研究 >
数学是物理的基础
发布时间:2017-12-06  信息发布人:管理员  

  17世纪以来,原有的几何和代数已难以解决当时生产和自然科学所提出的许多新问题,例如:如何求出物体的瞬时速度与加速度?如何求曲线的切线及曲线长度(行星路程)、矢径扫过的面积、极大极小值(如近日点、远日点、最大射程等)、体积、重心、引力等等;尽管牛顿以前已有对数、解析几何、无穷级数等成就,但还不能圆满或普遍地解决这些问题。当时笛卡儿的《几何学》和瓦里斯的《无穷算术》对牛顿的影响最大。牛顿将古希腊以来求解无穷小问题的种种特殊方法统一为两类算法:正流数术(微分)和反流数术(积分),反映在1669年的《运用无限多项方程》、1671年的《流数术与无穷级数》、1676年的《曲线求积术》三篇论文和《原理》一书中,以及被保存下来的1666年10月他写的在朋友们中间传阅的一篇手稿《论流数》中。所谓“流量”就是随时间而变化的自变量如x、y、s、u等,“流数”就是流量的改变速度即变化率,写作等。他说的“差率”“变率”就是微分。与此同时,他还在1676年首次公布了他发明的二项式展开定理。牛顿利甩它还发现了其他无穷级数,并用来计算面积、积分、解方程等等。1684年莱布尼兹从对曲线的切线研究中引入了和拉长的S作为微积分符号,从此牛顿创立的微积分学在大陆各国迅速推广。

  微积分的出现,成了数学发展中除几何与代数以外的另一重要分支——数学分析(牛顿称之为“借助于无限多项方程的分析”),并进一步进进发展为微分几何、微分方程、变分法等等,这些又反过来促进了理论物理学的发展。例如瑞士J.伯努利曾征求最速降落曲线的解答,这是变分法的最初始问题,半年内全欧数学家无人能解答。1697年,一天牛顿偶然听说此事,当天晚上一举解出,并匿名刊登在《哲学学报》上。伯努利惊异地说:“从这锋利的爪中我认出了雄狮”。